MotionDecipher: General Video-assisted Passcode
Inference In Virtual Reality

Guanchong Huang
University of Oklahoma
Norman, OK, USA
guanchong.huang @ou.edu

Yi Wu
University of Oklahoma
Norman, OK, USA
yi.wu-1@ou.edu

Abstract—Virtual Reality (VR) technology offers a portable
and immersive experience at users’ fingertips. Personal Identifi-
cation Numbers (PINs) are essential for accessing VR devices
and applications, such as shopping, banking, and payments.
While recent studies infer VR keystrokes using sensors such as
inertial measurement units (IMUs) in headsets, they require pre-
infecting devices with malware, limiting real-world applicability.
Non-invasive approaches have emerged, yet they primarily target
traditional keyboards, which are visible to all and operated
directly by hand. In contrast, VR keyboards are virtual, visible
only to the user, and operated via controllers, rendering tradi-
tional methods ineffective. This paper presents MotionDecipher,
a novel video-assisted attack that infers a victim’s PIN input
in VR devices from footage of hand and controller movements
during typing. MotionDecipher captures both controller-triggered
keypress events in the time domain and inter-key movement
trajectories in the spatial domain. Varying PINs may result in
distinguishable spatiotemporal patterns, which an attacker can
capture and analyze to recover the input. Experimental results
on three commercial VR devices validate attack efficacy across
different environmental conditions.

Index Terms—Virtual Reality, PIN Authentication, Keystroke
Inference, Spatiotemporal Analysis

I. INTRODUCTION

The Virtual Reality market was valued at USD 13.58 billion
in 2023 and is projected to grow from USD 16.05 billion in
2024 to USD 62.39 billion by 2032, exhibiting a compound
annual growth rate (CAGR) of 18.5% from 2024 to 2032 [1].
The number of VR users in the United States was 73.3 million
in 2023 and is forecasted to reach 91.3 million by 2028 [2].
People use VR for education, gaming, entertainment, shop-
ping, and to join the metaverse that is a virtual world where
individuals can interact even when they are not physically in
the same place [3]. To access these VR devices or various
provided services (such as payments, content unlocking, or
parental controls), users inevitably need to enter sensitive
information, such as Personal Identification Numbers (PINs),
for authentication or authorization. For instance, many VR
devices, including Meta Quest 3 [4] and HTC VIVE Focus
3 [5], implement PINs as a quick, familiar method for securing

*Corresponding author

Yan He
University of Oklahoma
Norman, OK, USA
heyan@ou.edu

Shangqing Zhao
University of Oklahoma
Norman, OK, USA
shangqing @ou.edu

Song Fang”

University of Oklahoma

Norman, OK, USA
songf@ou.edu

access to them. Consequently, these sensitive PINs become
natural targets for attackers.

Emerging research efforts have proposed techniques to infer
keystrokes in VR environments (e.g., [6], [7], [8], [9]), while
they are all invasive and require deceiving the target VR
device to pre-install malware. Such malware is designed to
intentionally access and transmit sensitive data from various
sensors embedded within VR devices, such as IMU sensors
(accelerometers and gyroscopes) or hand tracking sensors.
These sensors capture critical information correlated with the
victim’s keystrokes. For example, a user’s head moves in
subtle ways as she types, and IMU sensors may track head
movements [9]; hand tracking sensors can reveal the positions
and angles of the user’s hands and fingers during password
entry [7]. The captured data are then sent to a remote site,
where an adversary can analyze it to infer the keystrokes.

Recording the typing process with cameras provides a non-
invasive solution to infer keystrokes on traditional keypads.
This technique leverages visual cues from a user’s hand
movement [10], [11], [12], eye movement [13], screen re-
flection [14], tablet backside motion [15], or shadow for-
mation around the fingertip [16] to reconstruct the input
keystrokes without requiring physical access to the device.
Such vision-based techniques all assume that the user presses
keys on a clearly visible, stationary keyboard (either physical
or touchscreen) with fingers. This setup allows cameras to
capture the key-specific hand, finger, eye, or device motion
information, which can then be analyzed to infer keystrokes.
However, in VR scenarios, both the keyboard display and the
user’s eyes are enclosed within the headset “shell”, creating
a unique, isolated environment where only the user can see
the virtual keyboard or interface they’re interacting with.
Thus, keystroke input in VR brings two new challenges
that undermine the effectiveness of traditional vision-based
keystroke inference techniques. First, the user’s eyes and
input keyboard are invisible to anyone outside, making video-
based attacks (e.g., [13], [14]) that leverage eye movements or
screen reflections impractical. Second, rather than using direct
pressing action, users often operate one or two controllers,

Index fingertip detected ‘

by MediaPipe
Ground-truth
index fingertip

Fig. 1: MediaPipe fails to track the Fig. 2: Hand land-
index fingertip. marks’ indices (0-20).

each equipped with buttons, to cast virtual laser rays to select
keys on virtual keyboards that float in space, disrupting the
spatial consistency typically used to correlate finger or hand
positions with specific keys (e.g., [10], [11], [12]).

Due to the unique setup and constraints of VR envi-
ronments, no known vision-based techniques can recover
keystrokes inputted via VR controllers. Only two recent non-
invasive, non-vision-based research efforts [17], [18] aim to
infer controller-based keystrokes in VR. Particularly, the wire-
less signal based technique [17] exploits the variations in the
captured WiFi channel state information (CSI) to recognize the
virtual keystrokes. However, this method requires deliberate
placement of both a transmitter and a receiver, positioned such
that the victim falls within the direct line between the two
devices. Also, CSI is highly sensitive to environmental changes
and may fluctuate significantly in response to small variations,
such as people walking nearby or interference from other mov-
ing body parts. Moreover, user-specific training is required to
account for variations in VR typing patterns, such as duration
and motion. The acoustic emanation based work [18] infers
the keystrokes by placing a recording smartphone surrounding
the victim and eavesdropping on the clicking sounds of the
moving hand controller during keystrokes. However, due to
the fast attenuation of acoustic signals over distance [19], this
method only works in a limited sensing range (e.g., within
2 meters), and the inference accuracy greatly decreases as
the recording distance increases. The limited sensing range of
acoustic sensing [20] presents significant hurdles for applying
acoustic emanation-based schemes in practice.

In this paper, we present the design and evaluation of Mo-
tionDecipher, a novel and practical attack that infers a victim’s
PIN input on VR devices by deciphering video footage of their
hand-controller interaction during PIN entry. MotionDecipher
is motivated by the observation that keystrokes at different
positions on the virtual PIN pad cause the user’s hand (or
controller) to exhibit distinct self-contained motion patterns,
which can be extracted and leveraged to infer the typed PIN.

The design of MotionDecipher faces two major challenges.
First, the typing finger is wrapped around the controller,
and the motion caused by pulling the trigger is subtle and
embedded within broader hand movements. This makes it
challenging to recognize when the user inputs a digit. In-
tuitively, the state-of-the-art hand tracking tools, e.g., Medi-
aPipe [21] that track on-hand keypoints, may offer a solution.
Unfortunately, in controller-based input, the occlusion caused
by the controller significantly reduces the accuracy of hand

movement tracking. For instance, as shown in Fig. 1, although
the index fingertip keypoint remains visible, MediaPipe in-
correctly detects it with a substantial displacement from the
ground truth, making it unreliable for determining whether
the trigger has been pressed. To address this, we design
a two-layer algorithm to recognize keypresses. In the first
layer, we train an instance segmentation model to isolate the
region containing only the hand and controller. In the second
layer, we build a classification model to identify keypress
events based on the segmented input. The second challenge
lies in mapping the captured keystroke frames to the actual
digits of the typed PIN. As mentioned earlier, the virtual PIN
pad is not visible from the attacker’s perspective, making it
impossible to directly associate the finger’s position during
input with specific key locations. Accordingly, we develop a
spatiotemporal correlation algorithm to translate a sequence of
keystroke-associated frames into the corresponding PIN.

To prevent attackers from continuously trying different
PINs, a VR system can enforce an exponential backoff strat-
egy, where the system waits for increasingly longer periods
after each failed PIN attempt. Also, the system can implement
an account lockout mechanism that temporarily disables PIN
entry after a certain number of consecutive failures (e.g., 5
or 10 attempts). Both strategies can significantly limit an
attacker’s ability to cycle through a list of inferred PINs. How-
ever, even when such defenses are in place, MotionDecipher
remains highly impactful: by narrowing the candidate PIN set,
it substantially increases the probability of success within the
limited number of allowed attempts.

The PIN retry and backoff behavior on Meta Quest devices
is undocumented in any official public source. Empirically,
we observe that Meta Quest 2 and 3 implement a tiered
PIN retry mechanism combining fixed and escalating delays.
The system permits five initial failed attempts without delay,
followed by a 30-second pause before the sixth. Attempts 6
through 10 proceed without further delay. A second 30-second
delay occurs before the 11th attempt, after which each failure
through the 39th incurs a fixed 30-second delay. Beyond that,
delays increase progressively: 60 seconds for attempts 40
through 49, 120 seconds for 50 through 59, 240 seconds for 60
through 69, and 480 seconds for 70 through 79. This coarse-
grained backoff strategy delays escalation and permits dozens
of PIN guesses without imposing prohibitive wait time. Such
leniency likely reflects Meta’s emphasis on usability over strict
security enforcement and further underscores the timeliness
and practical importance of MotionDecipher.

In summary, our main contributions are as follows:

o We propose MotionDecipher, the first video-based tech-
nique to infer PINs entered via VR controllers.

e We design a holistic deep learning-based framework
to recognize keypress events from recordings of hand-
controller interactions during PIN entry.

« We develop an algorithm that deciphers the typed PIN by
analyzing the spatiotemporal motion patterns embedded
in the sequence of keystroke-associated frames.

o« We carry out extensive real-world experiments, demon-
strating that MotionDecipher can consistently and signif-
icantly reduce the search space for each PIN.

II. PRELIMINARIES
A. MediaPipe

MediaPipe [21], developed by Google, is a state-of-the-art
hand-tracking tool that tracks 21 keypoints corresponding to
the joints of each hand, as shown in Fig. 2. Notably, MediaPipe
provides precompiled Python packages [22] for ease of use,
but Google does not release the source code or training data for
the underlying deep neural networks (DNNs) used in models.
This limitation prevents users from fine-tuning, retraining, or
modifying the core model architecture and weights with their
own data. Consequently, we cannot directly utilize MediaPipe
for VR keystroke behavior detection.

B. Mask R-CNN and CNN-LSTM

Object detection involves identifying and localizing objects
in an image or video by drawing bounding boxes around them.
Regions with Convolutional Neural Network (CNN) features
(R-CNN) [23] is an early and foundational object detection
method. Faster R-CNN [24] improves speed and scalability
over the original R-CNN. Mask R-CNN [25] builds directly
on Faster R-CNN, with additional components to predict
object masks, enabling instance segmentation, where the pixel-
wise boundaries of each object instance can be identified. In
this study, we build a Mask R-CNN model to eliminate the
background around the hand area and achieve high keypress
event recognition accuracy.

The Convolutional Neural Network-Long Short-Term Mem-
ory Network (CNN-LSTM) [26], [27] is a hybrid deep learning
architecture that combines the distinct advantages of CNNs
and Long Short-Term Memory Networks (LSTMs), a spe-
cialized type of Recurrent Neural Networks (RNNs) [28].
CNNs are well-suited for spatial feature extraction [29], [30],
while LSTMs excel at handling sequential data [31]. Unlike
traditional RNNs, which suffer from the gradient vanishing
problem (i.e., the gradients used to update the weights dur-
ing training become extremely small during backpropagation)
when processing long sequences and can only capture depen-
dencies in short sequences, LSTM incorporates memory cells
and gating mechanisms (i.e., input, forget, and output gates)
to selectively control the information flow, capturing complex
dependencies over extended time frames. CNN-LSTM can
extract complex spatiotemporal features, making it particularly
suitable for tasks involving tracking object changes across a
long continuous video frame stream.

III. ADVERSARY MODEL

We consider a general scenario, where a user uses a con-
troller to input a PIN to unlock a VR device or for authenti-
cation in applications such as purchases [32]. Typically, when
a user puts on a VR headset, they must type the PIN before
turning it on or waking it up. The study employs a standard 10-
digit passcode input on the virtual keypad of a VR device. An

Video clips
s ﬂ

Frame Division
& Pre-processing

- Ehandregions

SAM
Segmentation

Refined

7]

Y {(Ground-truth
i i | keypress events Labeler

' Region Winnowing

Mask R-CNN Model
Construction

)

CNN-LSTM
Classifier Builder

.| Refined Hand |
Region Extraction

" Classifier Building

Keypress Event

(a) Training: Develop a two-layer algorithm to recognize keypresses
Location Repetition
Mask R-CNN Feature Extraction
Model Distance & Direction PIN
CNN-LSTM | — Feature Extraction | —| list
Classifier d

Feature Fusion &
Correlation

Keypress

Detection

A new video clip

Frame Division
& Pre-processing

Motion
Demodulation

(b) Inference: Infer the PIN with a two-stage procedure

Fig. 3: Workflow of MotionDecipher.

adversary stealthily records the typing scenario with a single
RGB camera (e.g., a smartphone camera) from a distance of
at least 3 meters from the user, and aims to infer the typed
PIN by processing the recorded video. The recording captures
the hand and controller movement during typing, and does not
need to capture the victim’s whole body.

IV. ATTACK DESIGN
A. Attack Overview

Fig. 3 illustrates the high-level design of MotionDecipher,
consisting of two phases, i.e., the training and inference.

Fig. 3a depicts the offline training phase, in which a two-
layer algorithm is developed to recognize keypresses. The
attacker first divides the recorded video into frames, and pre-
processes them to coarsely extract hand movement data (i.e.,
the recorded raw hand regions containing hands, controllers,
and the environment). The pre-processed frames input into
a module called Segment Anything Model (SAM) [33] to
separate refined hand regions (containing only hands and
controllers) from the background area for training a Mask
R-CNN model, which helps automatically and accurately
extract refined hand regions per pre-processed video frame.
Such regions, together with their corresponding keypress
events (keypress or non-keypress) are then utilized to train
a CNN-LSTM classifier. In the inference phase, as shown in
Fig. 3b, after dividing the recorded video into frames and pre-
processing them, the attacker utilizes two important modules
to achieve PIN inference: keypress detection and motion de-
modulation. For the initial module, the trained Mask R-CNN
model and CNN-LSTM classifier are utilized successively to
detect keypress events. In the second module, the attacker
extracts the temporal feature from a detected sequence of
individual keypresses, then extracts the spatial distance and
direction features. Finally, all extracted features are combined
into a spatiotemporal representation that correlates with a digit
sequence, enabling PIN inference.

B. Training Phase

1) Frame Division and Pre-processing: We first divide the
recorded video clip into individual raw video frames using
OpenCV, an open-source library for computer vision and
image processing [34]. Since the region showing the hand
typically occupies only a small portion of the entire raw
video frame, we use object detection tools (e.g., MediaPipe)
to automatically crop the target hand region, resulting in
a rectangular bounding box around the hand holding the
controller for each frame where the hand is detected.

2) Refined Hand Region Extraction: The background in
the pre-processed frames may adversely affect keypress event
detection accuracy. We train a Mask R-CNN model to ex-
tract the refined hand region (containing only the hand and
the controller it operates). SAM (Segment Anything Model),
developed by Meta Al is applied to perform fine-grained
segmentation to get refined hand regions, and correct segmen-
tation results will be used to train the Mask R-CNN model.

SAM Segmentation: Fig. 4 illustrates how SAM seg-
mentation works. With a pre-processed frame in Fig. 4a,
SAM first identifies the edges of various objects in it, and
generates masks with different colors for each detected object,
as illustrated in Fig. 4b. We then manually select the desired
regions containing the hand and the controller by clicking
on the areas of interest. As shown in Fig. 4c, those manual
clicks are marked with small white dots. Fig. 4d shows the
resultant refined hand region. In the output frame, all pixels
not belonging to the refined hand region are set to black.

Mask R-CNN Model Construction: SAM-assisted refined
hand region extraction has two disadvantages that hinder its
scalability and reliability. First, it lacks the capability to au-
tomatically extract masks for specific objects, relying instead
on manual selection, significantly reducing efficiency. Second,
SAM may introduce segmentation errors and fail to recognize
the hand and controller correctly. Therefore, we propose to
train a Mask R-CNN model to automatically extract refined
hand regions in pre-processed frames with high accuracy.
When SAM segmentation outputs correct results, such data
(i.e., pre-processed frames and corresponding refined hand
regions) are utilized to train the Mask R-CNN model.

We record videos of a user operating the controller of a
Meta Quest 3 to input various digits (0-9). The user can freely
adjust their hand positions and orientations while entering
digits. Each video segment capturing the typing of a single
digit lasts 2 seconds to cover the entire keypress process. With
a frame rate of 60 frames per second (FPS), this results in
10 x 2 x 60 = 1,200 raw video frames in total. With SAM
segmentation, we obtain 1,094 correctly segmented refined
hand regions. These 1,094 corresponding pre-processed frames
and their associated refined hand regions constitute the training
dataset. We apply the standard 80/20 split for creating the
training and test sets, ResNet50 [35], [25] as the backbone,
and stochastic gradient descent (SGD) [36] for optimization.
Also, Appendix A shows example cases where Mask R-CNN
is able to extract refined hand regions while SAM fails.

(a) Preprocessed
frame

(b) SAM-generated
masks

Fig. 4: Refined hand region segmentation leveraging SAM.

(c) Mask
selection

(d) Refined hand
region

3) Keypress Event Classifier Building: Capturing key-
presses in VR (i.e., trigger presses) requires integrating spatial
and temporal information. Spatial details identify the typing
finger’s position and movement, while temporal information
tracks the sequence and timing of the keypress: approach,
press, and release. Thus, accurately recognizing and analyzing
keypresses necessitates a model capable of understanding both
the spatial and temporal features of the keypress process.
Accordingly, we choose CNN-LSTM, a supervised learning
(classification) technique that can effectively capture both
spatial and temporal features in video streams, as detailed
in Section II-B, for recognizing keypress and non-keypress
events with using the refined hand regions. Manual annotation
is carried out to build the training dataset for training a CNN-
LSTM keypress event classifier. This process involves labeling
each input frame containing only refined hand region with the
corresponding keypress event (keypress or non-keypress) to
provide the ground truth data needed for supervised learning.

Region Winnowing: Occasionally, the constructed Mask
R-CNN model may have extraction errors. We thus perform
a consistency check to see whether the extracted refined hand
regions are correct. We winnow out incorrectly recognized
refined hand regions, and the rest regions become training
data for building a CNN-LSTM classifier. We form a dataset
containing refined hand regions from 10 individuals (3 females
and 7 males) wearing Meta Quest 3 headsets. We take 50
videos for every person to record their hand-controller inter-
action. The video resolution is 1080p (1920x 1080 pixels) with
a frame rate of 60 FPS, which is typical for smartphones. Each
video lasts 2 seconds, where a user uses a controller to input a
random digit. Thus, we have a total of 50 x 10 x 2 x 60=60,000
frames. After region winnowing, we obtain 59,056 correctly
identified refined hand regions, inputted to event labeling.

Event Labeling: With refined hand regions, MotionDeci-
pher creates a training dataset by labeling keypress events at
the frame level. For the obtained 59,056 frames, 52,285 are
labeled as non-keypress, while 6,771 are labeled as keypress.
The common 80:20 train-test split is used to divide the training
dataset for building the CNN-LSTM model.

CNN-LSTM Classifier Builder: We aim to build a model
to detect the number of individual keypresses, i.e., the PIN
length, by recognizing keypress events from frames. Each
keypress generates a frame stream that captures the gradual
movement of the finger as it presses and releases the key.
An individual keypress is considered successfully recognized
if at least one keystroke-associated frame during its duration
is detected. Meanwhile, if two detected keystroke-associated
frames are separated by fewer than 10 frames, they are con-
sidered part of the same individual keypress, as an individual

TABLE I: Comparison of CNN with Mask R-CNN, CNN-
LSTM without Mask R-CNN, and CNN-LSTM with Mask
R-CNN in terms of the number of detected keypress events.
We abbreviate “Mask R-CNN” as “M”.

Users | CNN w/ M | CNN-LSTM w/o M | CNN-LSTM w/ M
P1 0/50 1/50 46/50
P2 3/50 0/50 47/50
P3 2/50 0/50 48/50
P4 0/50 2/50 46/50
P5 4/50 0/50 45/50

keypress typically generates at least 10 frames empirically.
To enhance the generalization of the trained model, data
augmentation is applied to expand the variety of train-
ing data. Particularly, during training, we utilize two pre-
processing layers (i.e., tf.keras.layers.RandomFlip [37] and
tf.keras.layers.RandomRotation [38]) in TensorFlow Keras
API to randomly flip and rotate frames, respectively. In
addition, we implement learning rate decay [39] and early
stopping [40] during the training process to prevent overfitting,
and employ Adam [41] for optimization. Table I reveals the
keypress events detection accuracy for 5 previously unknown
users, each of whom generates 50 keypress events. The CNN-
LSTM with Mask R-CNN achieved an average keypress
detection accuracy of 92.8%, significantly outperforming CNN
with Mask R-CNN (3.6%) and CNN-LSTM without Mask R-
CNN (1.2%). These results demonstrate the necessity of using
CNN-LSTM with Mask R-CNN for keypress event detection.

C. Inference Phase

The adversary first performs frame division and pre-
processes the obtained frames as in the training phase. With
the pre-processed frames, the built Mask R-CNN model and
CNN-LSTM classifier will be applied sequentially to achieve
keypress detection. Next, a motion demodulation module is
employed to extract spatiotemporal features associated with
PIN inputs and translate them into PINs.

1) Motion Demodulation: We aim to identify a shared
feature that links a sequence of individual keypresses in a
recorded video to a passcode, enabling its inference. A user
may move their hand (controller) while typing different digits.
We define keypress location as the position of the typing finger
within the corresponding video frame when a keypress is de-
tected, which varies depending on the digit typed. However, as
the attacker cannot observe the virtual keypad, such keypress
locations cannot be directly mapped into typed digits. We aim
to explore a feature to characterize the spatiotemporal structure
of a detected keypress sequence in the recorded video. Ideally,
this feature can uniquely determine a passcode. For a [—digit
passcode, there exist T4, = 10¢ possibilities in total. Thus,
in an ideal scenario, a perfect feature should divide T},
candidates into T},,, subsets. Each subset would then hold
only one passcode corresponding to the observed feature.

We utilize the identified feature to divide all 7T,,,, candi-
dates into T subsets. To quantify the distinguishability of this
feature, we define a metric - feature distinction rate, denoted
as n = TT (n € (0,1] as T < Tyqaz). When 7 approaches

max

1, we generate more subsets, implying a higher degree of
differentiation achieved using the feature. Therefore, our goal
is to identify a feature with a maximum 7, representing the
highest ability to distinguish among candidates.

Location Repetition Feature Extraction: Intuitively, ex-
cept for distinguishing PIN length, we can determine whether
or not two individual keypresses over different times are the
same. If two keypress locations are identical or highly similar,
it indicates that they correspond to the same digit. For an
N-digit passcode, we denote its N corresponding keypress
locations as Iy, 2, - -+ ,Iy. We represent its location repetition
as T = [ry,7ra,- - ,rnN]|, referred to as temporal vector. To get
the value of the vector 7, we initialize r; = 1 and set ¢ = 2,
then proceed through the following steps:

(1) if I; and I; (j < 9) are identical or highly similar, then
r; = rj; otherwise, r; = max(ri,re, - ,1ri—1) + 1,
where max is a function that returns the maximum value
among all parameters.

(2) we increment ¢ and jump to step (1), and stop until 2 = N.
For example, the passcode 260260’ would yield its temporal
vector of [1,2,3,1,2,3]. This is because the first three digits
are distinct, and the last three digits repeat the first three. Using
the location repetition of a 6-digit passcode, we can divide all
10% possible combinations into 203 distinct groups, where all
members within a group share the same 7 value. On average,
each group contains approximately 109/203 ~ 4,926 pass-
codes. Consequently, an input keypress sequence is mapped to
one of these 4,926 passcodes based on this feature. Therefore,
the feature distinction rate is 203/10° = 2.03 x 10~*.

The location repetition feature (i.e., temporal feature) only
indicates whether any two digits in different positions are the
same, without accounting for spatial features, i.e., the specific
changes between successive digits if they differ. Intuitively,
when the user presses two different keys, the movement
distance of the laser point is proportional to the inter-key
distance (/KD), which refers to the center-to-center spacing
between keys on the virtual keypad. Meanwhile, the movement
direction of the laser point varies according to the inter-key
direction (IKR), which represents the direction of the following
key relative to the current key. In return, the /KD and IKR
can facilitate narrowing down the candidates for the pair
of successive keypresses. In the following, we evaluate the
distinction rates when employing varying features.

Distance & Direction Feature Extraction: Let x =
[x1, 22, -+ ,zN] denote a sequence of N elements that can
be IKDs or IKRs. We define its spatial vector as S =
[y1,y2, -+ ,yn]. To construct S, we first classify all N
elements into M clusters. If z; and z; (¢,j€{1,2,--- ,N})
are similar, they are placed in the same cluster, with each
cluster representing a distinguishable /KD or IKR group. We
then sort the M clusters based on the value of a random
element from each cluster, assigning cluster indices from 1
to M accordingly. We set y; = C(z;), where C' is a function
that returns the index of the cluster in which z; is placed.
By applying the spatial vector to both spatial distances and
directions, we can extract their spatial distance and direction

?/ff“ (39,6 € [0°,90°)
A

Fig. 5: Different recording scenarios.

features. In Appendix B, the algorithm for spatial vector
generation is presented.

Position Transformation: From the video recordings, the
attacker cannot directly access the virtual keypad, which is
only visible to the user, and thus cannot get the /KDs during
passcode input. Instead, a hand position transformation method
needs to be developed to map the observed keypress locations
to the corresponding positions on the virtual keypad. These
mapped positions can then be utilized to calculate IKDs.

Empirically, the virtual keypad is designed to remain par-
allel to the user’s body, ensuring ergonomic interaction. A
coordinate system can be established, with the user’s body
aligning with the yz-plane and the xy-plane oriented perpen-
dicular to it, as illustrated in Fig. 5. The z-axis represents
the keypad’s depth relative to the user. The camera’s position
is C, and its projection in the xy-plane is C’. We refer to
the angle between the z-axis and the line OC” (referred to
as the c’-axis) as the yaw angle, denoted as 1), and the angle
between the camera’s optical axis (i.e., the direction that the
camera faces) and the ¢/-axis as the pitch angle, denoted with
6. Particularly, we consider three typical scenarios according
to the camera’s location relative to the target user,

e Frontal View: record user input in front of the user from
a central perspective, aligning the camera precisely with
the middle of the virtual keypad, where i) = 6 = 0°.

o Side View: the camera’s optical axis is parallel to the y-
axis, capturing user interactions with the virtual keypad
from a lateral perspective, where 1) = 90° and 6 = 0°.

o General View: the camera can face the user from an
arbitrary direction in the first octant (i.e., the region where
all three coordinates are positive), with 1,8 € [0°,90°).

Note that ¢ cannot exceed 90° until 270°, as this would
require recording keypresses from behind the user, where the
user’s body may obstruct the view of the controller or hand.
Additionally, for ¢ values between 0° and —90°, the camera
is positioned on the opposite side of the x — z plane, along the
negative y-axis. Similarly, for 6 values between 0° and —90°,
the camera is positioned on the opposite side of the x—y plane,
along the negative z-axis. For distance feature extraction, these
negative angles are equivalent to their positive counterparts.

Let N denote the PIN length. Two successive keypresses

(a) Near to the camera

(b) Moving away from the camera

Fig. 6: Impact of recording depth: all segments (connecting
keypoints 0 and 5, 5 and 17, and 17 and 0) decrease at the
same ratio as the hand moves farther from the camera.

generate two keypress locations 4; and A;; (i € [1, N — 1))
in the video, corresponding to Aj and Aj, , in the virtual
keypad. Using the measured distance |A;A; 1|, we compute
the corresponding /KD on the virtual keypad, i.e., [AjA;,|.

Frontal View Case: VR devices (e.g., Meta Quest 3) are
often designed to mirror real-world hand movements in the
virtual environment (i.e., applying a 1:1 mapping of virtual
to physical space) to offer the highest level of immersion.
Consequently, in the frontal view case, where the camera
and the “laser pointer” movement on the virtual keypad are
parallel, we have [AjA] | = [A; A1)

Side View Case: In this scenario, the attacker’s camera cap-
tures only the hand’s movement along the z-axis directly, while
the trajectory along the y-axis appears as a single projected
point on the camera. Let d denote the distance variation for
the two successive keypresses along the y-axis on the virtual
keypad. We then have [AjA] | = \/|A;Ai11]? + d%. Now,
the calculation of the moving distance on the virtual keypad
(.e., [AjAj, || can be simplified to computing the movement
distance (i.e., d) along the y-axis on the virtual keypad.

Generally, when holding the controller, the user’s grip
position remains relatively fixed, maintaining a consistent
orientation while adjusting the controller’s position using their
arm and wrist. We select two anchor points on the plane
of the hand that is visible to the camera, while is parallel
to the zz-plane. The segment connecting these two anchor
points is denoted as .S, and it is used as a reference for
tracking the hand’s relative position along the y-axis. When
the hand moves closer to the camera, the segment S appears
larger in the recording because objects closer to the camera
occupy more pixels in the field of view. When the hand moves
farther from the camera, the segment S appears smaller in
the recording, as the relative size decreases with distance. We
select 3 keypoints outputted by MediaPipe, indexed by 0, 5,
and 17, as discussed in Section II-A). Fig. 6 illustrates how
the segment lengths between keypoints change as the hand
moves away from the camera. Let .S; ; denote the measured
length, in pixels, of the segment connecting keypoints ¢ and
j (G,j € {0,5,17}). In Fig. 6a, we have Sp5 = 545,
Ss17 = 403, and Si7p = 418, while in Fig. 6b, these
values decrease to 454, 331, and 354, denoted as 56’5, Sg,n,
and Si; o, respectively. We observe that the ratio remains
So,5 Ss,17 _ S1

7.0 0 1.9
~1.2.
S(/),E) Si7,0

consistent across all segments: 57
5,17

N

wy

/4 Angular
field of view

-—C
Fig. 7: Field of view of the camera for the side view case.

As shown in Fig. 7, when the hand moves for a distance of
d along the y axis for two successive keypresses, a segment
will be scaled down by the ratio %1 in the camera’s view.
Let S; and Sy (So < S1) denote the observed reference
segment widths in the recording video at the first and second
keypresses (i.e., at distances L and L + d), respectively, where
L denotes the distance between the camera and the hand at
the first keypress. We thus have Sy = 57 - % According
to the property of similar triangles regarding ratios, we have
% = L%rd. We can then compute d as (S1/S2 — 1) - L.
Similarly, if the hand moves along the reverse direction of
the y axis, we have Sy > S1 and d = (S2/51 — 1) - L.
Consequently, we obtain

|AJAL | = VA A2+ (S2/S1 —1)2- L2 (D)

General View Case: In a general case, the camera can
be anywhere in the first octant. In this case, we convert the
problem of calculating the moving distance on the virtual
keypad (i.e., the yz-plane) into separately calculating the
moving distances along y-axis and z-axis. Fig. 8 illustrates
the relationship between movement distances along the y-
axis and z-axis on the virtual keypad and their correspond-
ing displacements in the camera’s recording. Let |H;H; 1]
and |V;V;11]| represent the movement distances along the y-
axis and z-axis, respectively. The corresponding measured

distances in the camera’s recording are denoted as |K/K'
‘ , | 1 i+1

K!K!
i1

// 1 s ! [
and |K]' K +1\ Wlth‘ ¢ = and cos ' = g];FK}’I’a\]e
_ L+1 / !/ i+1
|H;H;v1| = 7(:081/} Also, as 8/ = 0 and cos @’ = AT
KK/ .
we get |V;Viiq] %. Consequently, the moving

distance |AjAj, | on the virtual keypad can be computed as

|ALAL | =/ HiHi1 |2+ ViViga |2

KK P KPR P)
N cosZ 1 cos? 6 :

To obtain the /KR (denoted as) from the video recordings,

we also consider the three aforementioned typical scenarios:

o Frontal View: The angle of laser point movement (from
point A; to A;11) can be directly observed. As shown in
Fig. 9a, with 3/ || y and Ay - a point on the line 3/, we
have Y = LAH—lAiAO-

o Side View: In Fig. 9b, we align the second keypress
location, A;;1, in the recorded video and A 41 in
the virtual keypad. With the directly measured segment
|A;Ait1], and the computed /KD ,|AjAj, |, we obtain

| i t+1‘
= arcsin trr
¥ = ATAL

x Camera 2
Plane
Vier

Optical
Optical Axis

Axis N

B

(a) Distance along y-axis (b) Distance along z-axis

Fig. 8: The movement distance on the virtual keypad and its
corresponding reflections on the recorded image.

H'l Ai+1(A,i+1) Vi+1(A,i+1)
y am A
y y
(a) Frontal view (b) Side view (c) General view

Fig. 9: IKR in three different scenarios.

o General View: While computing IKD, we obtain the
laser point movement distances along the y-axis and
on the keypad, |V;Vi 1| and |AjA;, |, respectively. In
Fig. 9c, we align V;y, with A ;. Thus, we get o =

[ViViga]

arcsin [ALA

z+1‘

IKD Feature Extraction: For the Meta Quest 3 virtual
passcode keypad, the horizontal center-to-center distance be-
tween adjacent keys in the same row is set as 1 unit.
Consequently, the vertical center-to-center distance between
adjacent keys in the same column is represented as 3/5

unit. Accordingly, all IKDs in the keypad form a set of
{0,3,1,8,¥31 Vo119 9 V106 V109 VIS6} Some JKDs are

IAGE] 55 150
quite close and the resultant hand movement distances may not

show obvious difference, we divide all /KDs into the following
five groups (g1 to gs): if two IKDs belong to the same group,
they are categorized into the same subset, and vice versa.

e g1: IKD € {0}:

e (o: IKDE{S}

e g3: IKD € {1,5, 54};

. g1 IKDe{r}

e g5t IKD € {2,2, Y106 V109 VI36

Based on the IKDs of a typed PIN, we can thus derive
its spatial distance feature by computing the spatial vector.
Similarly, for a 6-digit PIN, we can then obtain 541 subsets
in total. Each subset has about 10°/541 =~ 1,848 pass-
codes. Thus, the corresponding feature distinction rate equals
541/10% = 5.41 x 10~*

IKR Feature Extraction: The IKD feature captures the
displacement of the laser point between consecutive keystrokes
but does not encode directional information, leading to am-
biguity where multiple key pairs can have the same spatial
distance. For example, the /KD values of key pairs ‘“2-1”
and “2-3” are identical. To address this issue, we consider
eight common standard directions: east (0°), southeast (45°),
south (90°), southwest (135°), west (180°), northwest (225°),
and north (270°). When inputting passcodes, the laser point

270°+At

270°-At

225°+At 315°-At

225°-At 315°+At

180°+At

135°+At

135°-At 45°+At

< Ambiguous
Area

90°+At
Fig. 10: Eight direction groups and ambiguous areas.

90°-At

may not always be aimed precisely at the center of each key
area. Therefore, we classify a movement as belonging to a
standard direction if its direction falls within £A¢ degrees of
that direction. This results in eight separately distinguishable
direction regions. Note that At < 22.5° to prevent overlap
between two successive direction regions. When two IKR
values fall within the same direction region, they are assigned
the same directional label. As shown in Fig. 10, each pair
of successive direction regions is separated by an ambiguous
area with an angular width of 45° —2A¢. When the movement
of the laser point falls within this ambiguous area, it can be
categorized into either of its two neighboring direction regions.

In general, a smaller At increases the size of the ambiguous
area, potentially leading to more candidates for a PIN whose
IKRs lie within these areas. Meanwhile, it can tolerate larger
IKR calculation errors (e.g., when the laser point does not
perfectly align with the center of the key areas while pressing
keys). In contrast, a larger At reduces the size of the ambigu-
ous area, resulting in fewer PIN candidates overall. However,
it tolerates smaller /KR calculation errors and may increase
the probability of IKR feature misclassification. Empirically,
we set At = 14.5° to balance the feature classification and
efficiency for PIN inference. With the IKRs of a typed PIN,
we can obtain its spatial direction feature by computing the
spatial vector. Accordingly, we get 21,211 groups to use /KR
to divide all 6-digit PIN space, achieving a feature distinction
rate of 21,211/10° = 0.021211.

Feature Fusion & Correlation: Feature fusion combines
the temporal and spatial (distance and direction) features
into a spatiotemporal representation, which is more discrim-
inative than any individual input feature. With a record-
ing of typing an n-digit PIN, we can compute its tem-
poral feature 7 = [ry,7o,--- ,7r,], spatial distance feature
S84 = [s¢,54,--- s], and spatial direction feature S" =
[sT,85,---,s"_,], enabling us to obtain its spatiotemporal
feature ST = [r1,s¢,87,72,89, 85, ,sd 1,87 1, rn]. We
utilize ST to divide all 6-digit PINs, and obtain 444,731
subsets in total, which is 2,190, 821, and 20 times more than
those obtained using the temporal, spatial distance, or spatial
direction feature, respectively. The resultant feature distinction
rate becomes 444,731/10° = 0.444731.

Fig. 11 illustrates feature distinction rates when searching
for PIN candidates using traditional brute-force guessing (BF),

ESBr
B r
- ||l sP!
10 BN sp
[sT

Feature Distinction Rate
=)
IS

108

]
0 &

4

5 6
PIN Length

Fig. 11: Feature distinction rate comparison.

the temporal feature (TP), the spatial distance feature (SP%),
the spatial direction feature (SP"), and the spatiotemporal
feature (ST), with the PIN length L varying from 4 to 8. An
interesting observation emerges: as the PIN length increases,
the feature distinction rates of BF, TP, SP?, and SP” all
decrease, indicating that the PIN inference becomes more
challenging due to a larger average number of PINs per
subset. In contrast, the feature distinction rate for ST gradually
increases. This finding demonstrates that the spatiotemporal
feature consistently helps narrow the search space for the typed
PIN and becomes even more effective for longer PINs.

V. EXPERIMENTAL EVALUATION

We develop an Android app to implement MotionDecipher
and test it on off-the-shelf smartphones, targeting to infer PIN
input on popular VR devices. The prototype system consists
of a VR user (victim) and an attacker using a common
smartphone (i.e., Samsung S23 [42]) to record the user’s
hand-controller interactions while inputting PINs on a VR
device. The smartphone is configured with standard settings
and records 1080p videos at 60 FPS. The inputted PINs are
extracted from the RockYou 2024 dataset [43], a well-known
repository of real-world leaked PINs. The recorded video is
then processed by the app of MotionDecipher to generate a
candidate list of the target PIN entered by the victim.

Metrics: We use the following two metrics.

o Entropy: It measures the PIN strength against brute-force
attacks. Suppose there are m candidates for a PIN X and
x; (i € {1,2,---,m}) denotes one of them. The X’s
entropy H(X) equals — > 7" | P(x;) -log, P(x;), where
P(z;) is the probability that X = z; holds.

e Top-k Accuracy: Tt represents the probability that the
final candidate list includes the target PIN inputted by
the victim, denoted by «. With m final candidates, we
have « = k/m if k is smaller than m, otherwise, o = 1.

A. Case Study

In this example, the user enters a six-digit PIN - “260422”
to unlock a Meta Quest 3. We record the user’s controller
operation from a distance larger than three meters. Using the
recorded video, we successfully identified all keypress events.

Fig. 12 presents six extracted individual keypress frames
alongside their detected keypress locations on the virtual

——4-digit w/ attack

-0-Top-10

-~ 4-digit w/o attack
5-digit w/ attack

—-Top-25
-©- Top-50

o
®

5-digit w/o attack
lg——6-digit w/ attack

Top-100
——Top-200

-o- 6-digit w/o attack
——7-digit w/ attack
-+ 7-digit w/o attack
—+—8-digit w/ attack
-+ 8-digit w/o attack

=}
N
?
1
1
1
1
4
1
1
/
!
I
1
1

o
o

Inference Accuracy
o
=
T
1
1
I
1

0 20 40

PIN Index

60 80 100 4

6
PIN Length (digits)

Fig. 12: Raw keypress frames and the Fig. 13: Entropy distribution for PINs Fig. 14: Average top-k accuracy for in-

keypress locations on the virtual keypad. with varying lengths.

keypad. As observed, actual keypresses do not always align
perfectly with the center of key areas, highlighting the neces-
sity of our motion demodulation algorithm, which effectively
tolerates off-center keypresses. The temporal location repeti-
tion feature is [1,2,3,4,1,1]; the spatial distance feature is
[2,3,3,2,1]; the spatial direction feature is [east or southeast,
west or southwest, northwest, east or northeast, east]. With
feature fusion and correlation, MotionDecipher yields three
candidate PINs - “238122”, “260422”, and “560455”. We see
that the second candidate is the correct one. Thus, MotionDeci-
pher substantially reduces the maximum attempts for breaking
this 6-digit PIN to just 3, compared with the brute force
attack that needs 10° times. Accordingly, the PIN entropy is
decreased from 6log, 10 = 19.93 bits to log, 3 = 1.58 bits,
and the top-k accuracy equals 100% when &k > 3.

B. Inference of PINs with Varying Lengths

PINs are commonly four digits for ease of memorization
and usability [44], and 6-digit passcodes are also popular [45],
[46]. For security considerations, the PIN length nowadays can
be diversified. To approximate user choices of passcodes in
practice, we extract leaked real-world PINs with 4 to 8 digits
from the RockYou 2024 database. For every passcode length,
we obtain 100 samples, and type each extracted passcode
separately when using a Meta Quest 3. The attacker uses
a Samsung S23 and launched MotionDecipher, computing
passcode entropies and top-k accuracies.

We sort the PINs of each length in ascending order of the
entropies and index them from 1 to 100 in increments of
1, as shown in Fig. 13. For comparison, we also show the
PIN entropy distribution without applying the proposed attack.
We observe three major trends. First, with MotionDecipher,
the search space of the typed passcode with different lengths
is significantly shrunk. The attack decreases the entropy of
an 8-digit PIN from 26.6 bits to as low as 3.9 bits, vastly
reducing the maximum brute-force attempts for breaking the
passcode from 100 million to just 15. Second, PINs of the
same length exhibit significant variations in entropy, indicating
notable differences in security levels, and longer PINs may
introduce greater security disparities. Third, longer PINs do
not necessarily enhance security and may even weaken it,
as indicated by similar entropy distributions across different
PIN lengths. This counterintuitive result occurs because longer

ferring PINs with varying lengths.

PINs offer attackers richer spatiotemporal features, enabling
them to narrow the search space more effectively. For example,
MotionDecipher reduces entropy by an average of 7.4, 10.3,
12.7, 14.7, and 16.5 bits for 4- to 8-digit PINs, respectively.
Consequently, cracking a 6-, 7-, or 8-digit PIN may be simpler
than brute-forcing a 3-digit PIN, and meanwhile, deducing a
4- or 5-digit PIN may require less effort than brute-forcing
a 2-digit PIN. In addition, we count the number of guesses
required to infer each selected PIN. With MotionDecipher,
78% of the chosen 4-digit PINs can be inferred within 100
guesses, 77% of 5-digit PINs within 150 guesses, and 70%
of 6-digit PINs within 300 guesses. For longer PINs, 60% of
7-digit PINs can be inferred within 800 guesses, and 52% of
8-digit PINs within 1,500 guesses.

Fig. 14 illustrates the average top-k accuracy for varying
PIN lengths. We see that MotionDecipher can consistently
achieve high inference performance for all PIN lengths, and
the mean top-k accuracy exhibits a decline as the key length
increases. Particularly, the mean top-100 accuracy ranges from
28.9% to 88.8% across PIN lengths, demonstrating that up to
100 guesses are sufficient to infer a substantial portion of PINs,
depending on their length. Also, our attack achieves at least
13% mean top-25 accuracy across all PIN lengths.

C. Robustness to Influential Factors

The recording distance/angle/device may vary for the at-
tacker, and the victim may use different VR devices. In
the following, we evaluate the impact of those factors. We
randomly select 100 4-digit PINs from the RockYou 2024
database, and ask the user to input each selected PIN wearing
a Meta Quest 3, under each situation.

1) Impact of Recording Distances: While the user is im-
mersed in the VR environment, an attacker’s close physical
proximity may alert the user to their presence [47], especially
since some VR headsets feature capabilities like Passthrough
on Meta Quest headsets [48], which allow users to observe
their physical world surroundings through the headsets’ in-
tegrated cameras. To avoid suspicion, we vary the recording
distance from 3 to 8 meters in increments of 1 meter.

Fig. 15 illustrates the entropy distribution for varying
recording distances. We see that, regardless of the recording
distance, the search space of the typed PIN is significantly

~N o

-
|
1

j80¢

1
:
E .=~ Top-10
R - Top-25
. > Top-50
n Top-100
~Top-200
7 8 3 4 5 6 7 8
Distance (m)

Fig. 16: Average top-k accu-
racy vs. distance.

(o]

Entropy (bits)

L 1
L

b--{ T F---+

Inference Accuracy

N

3 4 5
Distance (m)

Fig. 15: Entropy distribution
vs. distance.

1 T 1
o)

8 - 8038
2 -] =1
g7: LT 306
2 — g S -> Top-10
g6 |$| 20.4 - Top-25
S o > Top-50
st + ' + L0.2g-mmmmmrreonennn e Top-100

. -+ -4 = 0 ~Top-200

15 20 25 30 15 20 25 30
Distance (m) Distance (m)
Fig. 17: Entropy distribution Fig. 18: Average top-k accu-

for long distances. racy for long distances.

reduced. Overall, the attacker decreases the entropy of a 4-
digit PIN from 13.2 bits to a range between 3.9 to 8.5 bits.
This vastly lowers the maximum brute-force attempts required
to break the PIN, reducing them from 10,000 to as few as 15.
Particularly, at each recording distance from 3 to 8 meters, at
least 54% of the selected PINs can be recovered in fewer than
70 guesses. Also, the entropy ranges for different recording
distances are quite similar. Fig. 16 presents the corresponding
inference accuracy. We observe that our attack consistently
reduces PIN strength across all recording lengths. The top-
10 and top-25 accuracies range from 16.2% to 20.3% and
40.0% to 50.3%, respectively, while the top-50, top-100, and
top-200 accuracies remain above 69.0%, 87.9%, and 94.8%,
respectively.

Long Recording Distance Tests: Digital zoom is a
software-based feature commonly used in smartphones. Unlike
optical zoom, which physically adjusts the lens to magnify a
subject, digital zoom works by enlarging a specific portion
of an image. This process may result in a significant loss
of image quality, as no additional information is added to
the magnified image. Some of the latest smartphones, though
not all, are equipped with optical zoom lenses. These lenses
can be adjusted to bring the target closer or farther away
while preserving the clarity and detail of the image. We
employ a Samsung S23 Ultra smartphone with 10 times optical
zoom [49] and a 36X budget telephone lens (40 US dollars
around) [50] to perform the experiments. Our long-distance
tests are conducted in a long corridor of a building. We vary
the recording distance from 15 to 30 m in increments of 5 m.

Figures 17 and 18 present the resultant entropy distribution
and top-k accuracy. We see that, overall, for the tested long dis-
tances, the inference performance of MotionDecipher remains
consistent with cases where the recording distance is between

=)
=)

T T - - -
T

-

[ongpog Headeen:

30 45 60 75 90 -30 -15 15 30 45 60
v (%) 0(°)

F

Entropy (bits)
58 0o N ® ©

0 15

Fig. 19: Entropy vs. 9. Fig. 20: Entropy vs. 6.
- e Top-10 --Top-25 - Top-50 > e Top-10 -~Top-25 - Top-50
8 1 Top-100 ~Top-200 8 1 Top-100 ~Top-200
3 3
80.8 808
< <
20.6 00.6
1< g
004 ©04r T el
202] oo oo 202
0 0
0 15 30 45 60 75 90 30 <15 0 15 30 45 60

Fig. 21: Accuracy vs. 1. Fig. 22: Accuracy vs. 6.

3 and 8 meters. Specifically, the average entropy for varying
long distances ranges from 5.8 to 6.2 bits; the average top-
100 and top-200 accuracies consistently exceed 92% and 97%,
respectively, across all cases. Also, MotionDecipher infers at
least 50% of PINs within 70 guesses at each tested long
distance, showing its practicality for long-range attacks.

2) Impact of Recording Angles: The attacker may record
the typing from various directions, characterized by yaw and
pitch angles (i.e., 1) and #), as defined in Section IV-C1. We
maintain 6 fixed and vary ¢ from 0° to 90°, with increments
of 15°. Next, with a fixed ¢, we vary 6 from —30° to 60°,
with increments of 15°. Figures 19 and 20 present the obtained
entropy distribution. We see that with a fixed 6, the average
entropy ranges from 5.9 to 6.7 bits; with a fixed 1), the average
entropy ranges from 5.9 to 6.9 bits. Meanwhile, as v increases,
the average entropy gradually decreases. This appears to be the
case because a larger yaw angle generally offers a clearer view
of both the controller’s trigger and the user’s finger pressing
it, thereby improving the accuracy of keypress detection.
Similarly, as 6 increases from 0° to 60°, or shifts from 0°
to —30°, the average entropy slightly increases. By counting
the number of inferred candidates for each selected PIN, we
see that 66-76% of PINs across yaw angles and 56-76% across
pitch angles can be inferred within 100 guesses.

Figures 21 and 22 show the corresponding average top-
k accuracy. We see that MotionDecipher reduces the PIN
strength across all test yaw or pitch angles. Particularly, with
a fixed 0, the top-100 accuracy for all) consistently exceeds
0.81. Like the entropy variation, the top-k accuracy slightly
increases with 1. Also, with a fixed v, the average top-k
accuracy exhibits a rise-and-fall pattern, peaking at 8 = 0°,
where the minimum average PIN entropy occurs. In addition,
Appendix C and Appendix D present the impact of recording
frame rates and resolutions, respectively.

3) Impact of VR Devices: We test three popular VR de-
vices: Meta Quest 2, Meta Quest 3, and HTC VIVE XR Elite,
abbreviated as Quest 2, Quest 3, and VIVE XR, respectively.
As shown in Fig. 23, Quest 2 and Quest 3 share the same

Continue

Continue

Yy

(a) Meta Quest 2 (b) Meta Quest3 (c) HTC VIVE XR Elite

Fig. 23: Virtual PIN pad layouts and corresponding controllers.

9—— 9 =
! - - T

:"?’8 1 | :@8 | . 1
é7 ! @7 1 1 !
2 H 2
£ = £
Wsl 1 T L Wsr - - T

4 4

Quest2 Quest3 VIVE XR SG iP OoP
VR Device Recording Device

Fig. 24: Entropy vs. VR Fig. 25: Entropy vs. record-
device. ing device.

virtual PIN pad layout, whereas VIVE XR adopts a similar
design; the controllers of both Quest 2 and VIVE XR feature
tracking rings encircling the top, while Quest 3 controllers
have no visible tracking ring. Fig. 24 presents the observed en-
tropy distributions. All devices exhibit similar median entropy
values (Quest 2: 6.0 bits; Quest 3: 5.5 bits; VIVE XR: 5.6 bits).
In terms of average entropy, the VIVE XR slightly outperforms
the others, with Quest 2, Quest 3, and VIVE XR achieving 6.4,
6.0, and 5.8 bits, respectively. This improvement may stem
from the smaller key sizes on the VIVE XR’s virtual PIN
pad. Smaller keys constrain the laser pointer’s movement when
selecting digits, resulting in more distinguishable inter-key
distances, and consequently, more informative spatiotemporal
features. Across different VR headsets, MotionDecipher infers
66% of the selected PINs within 100 guesses on Meta Quest 2,
76% on Meta Quest 3, and 88% on HTC VIVE, demonstrating
robust performance across platforms.

Table II shows the corresponding average top-k accuracy.
We see that all three VR devices can achieve no smaller
than 0.67 top-50 accuracy. Similarly, due to the smaller key
sizes, VIVE XR has slightly higher top-k accuracy when
k € {50,100,200}, accordingly. These results convincingly
demonstrate the effectiveness of MotionDecipher against di-
verse VR devices operated via handheld controllers.

4) Impact of Recording Devices: We experiment with cam-
eras on three popular smartphones, Samsung Galaxy S23,
iPhone 14, and OnePlus 12, referred to as SG, iP, and OP,
respectively. Fig. 25 presents the corresponding entropy distri-
bution. We see that for all recording devices, MotionDecipher
makes breaking PINs much easier than traditional brute-force
attacks. The average entropies for SG, iP, and OP are 5.99,
5.93, and 6.05 bits, respectively, with no significant variation.
Across smartphones, MotionDecipher infers 72% of PINs on
OP, 76% on SG, and 80% on iP within 100 guesses, demon-
strating its reliability on consumer-grade recording devices.

TABLE II: Average top-k accuracy vs. VR device.

Device Top-10 | Top-25 | Top-50 | Top-100 | Top-200

Quest 2 0.15 0.37 0.67 0.83 0.94

Quest 3 0.20 0.50 0.78 0.88 0.94
VIVE XR 0.16 0.40 0.71 0.86 0.93

TABLE III: Average top-k accuracy vs. recording device.

Device Top-10 | Top-25 | Top-50 | Top-100 | Top-200
OnePlus 12 0.19 0.48 0.74 0.87 0.93
Samsung S23 0.20 0.50 0.78 0.88 0.94
iPhone 13 0.21 0.53 0.78 0.88 0.94

Table III presents the corresponding mean top-k accuracy.
We observe that all recording devices achieve consistent infer-
ence performance; in particular, the top-100 accuracy equals
or exceeds 0.87. These results suggest that MotionDecipher is
robust against different recording devices.

VI. REAL-WORLD USER STUDY

We recruited 10 volunteers (U1-U10; aged 21-36 years old;
4 females and 6 males), all of whom are active VR users,
to examine the practicality of MotionDecipher.! Experiments
were conducted in a lobby, where each participant was in-
structed to sit on a chair, put on a Meta Quest 3 headset,
and proceed to unlock it. Benefiting from the ergonomic
design of the controllers, all participants naturally chose to
use them for PIN input. We consider two typical scenarios
based on the distance between the attacker and the victim, as
shown in Fig. 26: (a) normal-distance: MotionDecipher runs
on a Samsung S23 smartphone placed at a distance greater
than 3 meters but less than 20 meters from the victim; (b)
long-distance: MotionDecipher runs on a Samsung S23 Ultra
smartphone equipped with 10x optical zoom, positioned more
than 20 meters away from the victim. Each participant freely
adjusted their sitting positions and randomly selected a 6-digit
PIN as the target PIN. We allow the participants enough time
to memorize and practice their selected PINs before testing.
Also, we reminded participants not to choose their true in-
use PINs for their devices or applications. For each scenario,
every participant performed 50 attempts with different PINs.
We present the inference results to the corresponding partici-
pant, who determines whether the inferred PIN candidate list
contains the input PIN. For all trials of all participants, we find
that the input PIN is always included in the inference result.
Also, 70% of the PINs selected by all users can be inferred
within 300 guesses under the normal-distance scenario, and
60% under the long-distance scenario.

Figures 27 and 28 show the resultant entropy distributions
across all users. We see that in both scenarios, MotionDecipher
consistently reduces PIN strength across all users. Also, over-
all, the entropies in the normal-distance scenario are slightly
lower than those in the long-distance scenario. Specifically, in
the normal-distance scenario, the mean entropy across users
ranges from 6.68 to 8.20 bits, whereas in the long-distance
scenario, it ranges from 7.35 to 8.73 bits. This appears as
shorter recording distances lead to more accurate keypress

IThe study has been reviewed and approved by our institution’s IRB.

- [l <eypress
v

Keypress

(a) Normal-distance Scenario (b) Long-distance Scenario

Fig. 26: Real-world scenarios.

gl s

5
NENENCIN N N NN NN
User Index

6 H '
1 [
L L4

Entropy (bits)
~ © ©
-1
i
Y o
Entropy (bits)
g
B i i
S i i LY
-
O i
T F--
F-C T 1

5
S IFPIT PP e O
User Index
the Fig. 28: Entropy in the long-
distance scenario.

Fig. 27: Entropy in
normal-distance scenario.

event detection and spatiotemporal feature extraction. Also,
the long-distance scenario involves a more complex recording
environment, introducing additional occlusions that hinder
accurate hand movement tracking. Figures 29 and 30 illustrate
the corresponding average top-k accuracy values. We observe
in the normal-distance scenario, the top-200 accuracy ranges
from 0.64 to 0.95, while it varies from 0.53 to 0.89 in the
long-distance scenario. This indicates in both scenarios, over
half of the selected 6-digit PINs can be successfully inferred
within 200 guesses for all users.

VII. COUNTERMEASURES
A. Mitigating PIN Guessing via Backoff and Lockout

To defend against brute-force attacks against PIN authenti-
cation, real-world systems often implement exponential back-
off or account lockout mechanisms to avoid excessive PIN
guesses in a limited time. For instance, iOS Lock Screen
imposes delays of 1 min, 5 min, 15 min, 1 hr, 3 hrs, and 8
hrs after 4 to 9 failed passcode attempts, disabling the device
after 10 [51]. VR systems, including Meta Quest 2 and 3, as
discussed in Section I, currently employ a tiered PIN retry
strategy that combines fixed and slowly escalating delays,
prioritizing usability by allowing dozens of guesses without
enforcing prohibitive wait times. Such a weak policy would
make the systems more vulnerable to the proposed attack.

On the other hand, for a system equipped with the defense of
exponential backoff or account lockout, the effective success
rate of MotionDecipher depends on the number of allowed PIN
attempts (denoted as L,,,,) relative to the inferred candidate
list size (denoted as K). If L,,,, > K, the attacker can test all
candidates, and the success rate remains at the original top-K
accuracy. However, if L,,,, < K, the success rate decreases
proportionally to L,, ., /K. Meanwhile, when L., is set too
small, it may significantly degrade usability, as legitimate users
may be locked out after a few mistakes.

- Top-10 -* Top-25 o Top-50
-+ Top-100 ~Top-200

- Top-10 -~ Top-25 -°-Top-50
-+ Top-100 ~Top-200

Inference Accuracy
Inference Accuracy

: -
NN N NN NN NENSNENE SR NI NN

Fig. 29: Top-k accuracy in the Fig. 30: Top-k accuracy in the
normal-distance scenario. long-distance scenario.

B. Deploying External Barriers

An intuitive defense is to use physical barriers that obstruct
an attacker’s line-of-sight (LoS) to the VR user’s controllers
during PIN entry. However, as MotionDecipher works across
a broad range of angles, this approach would require pre-
deploying additional physical hardware (i.e., a large barrier),
making it impractical and non-portable. Moreover, introducing
physical objects into the user’s VR environment (i.e., the
physical space around them) may restrict user movement and
even pose safety risks, ultimately undermining the goal of an
immersive and seamless VR experience.

C. Randomizing Keypad Layouts

A viable defense is to randomize the keypad layout for each
digit input, such that the disclosed spatiotemporal features are
obfuscated. Specifically, repeated keypress locations do not
necessarily correspond to the same digit, and the inter-key
distance or direction between a pair of digits is no longer
fixed. This method introduces ambiguity into motion patterns
without requiring external barriers. However, such a software-
based method requires changes at the level of User Interface
(UI) to enable the random rearrangement of keys after each
digit entry, which may slow down the overall PIN entry
process. Also, User Experience (UX) will be affected, as users
may find it challenging to adapt to this dynamic input method.

D. Adding Guard Digits

Another software-based defense is to type specifically gen-
erated extra digits visible to the VR user while unknown
to the attacker, referred to as guard digits. Since inserting
digits among the actual PIN sequence may disrupt the input
process, we position guard digits at the beginning, the end,
or both of the actual PIN. Such extra input would force the
attacker to determine which part of the inferred digit sequence
corresponds to the actual PIN. Our work reveals that a longer
VR PIN does not necessarily have higher security, as discussed
in Section V-B. Thus, the guard digits need to be carefully
designed. Let Ny and N, denote the number of candidate PINs
without and with guard digits, respectively. If N, > Ny, this
strategy increases the attack difficulty. Suppose the user types
L guard digits and the actual PIN, which can appear before
the first guard digit, between any two consecutive guard digits,
or after the last guard digit. There are L + 1 possible positions
for the actual PIN within each candidate of the typed whole

digit sequence. Consequently, considering possible repetition,
the attacker would have up to N,(L + 1) PIN candidates.

Compared with the method of randomizing keypad layouts,
which typically requires (N — 1) keypad rearrangements for
entering an N-digit PIN, this approach also necessitates UlI-
level modifications but generally requires only a single keypad
change per PIN entry to accommodate the input of guard
digits. From this perspective, this method is easier to imple-
ment than the defense of randomizing keypad layouts. Besides,
it involves entering additional digits, which introduces UX
changes and may lead to a longer PIN input time.

VIII. RELATED WORK
A. Traditional Keystroke Inference

Extensive research has been aimed at inferring keystrokes
in non-VR environments, particularly through non-invasive
approaches, which mainly include the following categories.

Vision-based: An attacker can stealthily record the typing
process. In traditional settings, where users type directly
on physical or touchscreen keyboards with their fingers, at-
tackers can recover keystrokes by tracking keypress-induced
movements of the hand or fingertips [10], [16], [52], [53],
upper body [12], tablet backside [15], or even eye gaze [13].
Also, typed input can be revealed by exploiting key pop-out
events [14] or analyzing hand motion [54] in reflections on
surfaces such as sunglasses. However, due to the nature of
VR, both the virtual PIN pad and the user’s eyes are enclosed
within a headset, effectively eliminating the possibility of
visual leakage via reflections or eye movement. Furthermore,
users do not directly interact with a physical or touchscreen
keyboard but input in the air using handheld controllers,
resulting in unique motions that differ significantly from those
observed in traditional keystroke scenarios. Consequently,
traditional vision-based keystroke inference techniques are
rendered ineffective in VR environments.

Sensor-based: Data captured via diverse on-board sen-
sors, such as microphones [55], [56], [57], [58] and Inertial
Measurement Unit (IMU) sensors (e.g., accelerometers and
gyroscopes) [59], [60], [61], [62], can also be utilized to
infer keystrokes. Such techniques, however, require placing
the spying sensor in close proximity to the target.

Wireless-based: Wireless signals have shown success in
inferring sensitive information related to human motion [63].
By placing a wireless receiver near the target keyboard in
a wireless environment, an attacker can capture keystroke-
disturbed wireless signals to infer keystrokes [64], [65], [66],
[67], [68]. However, wireless-based techniques are often sen-
sitive to environmental motion.

B. VR Keystroke Inference

Invasive: Attackers are assumed to have the capability
to pre-install malware on the victim’s VR devices, which
stealthily transmits collected sensitive data, such as hand
motion [6], [7], head orientation and location information [8],
or headset accelerometer and gyroscope readings [9], back to
attackers. However, such invasive attacks can be mitigated by

anti-malware techniques, and may be infeasible for cautious
VR users, who verify the legitimacy of each installed app.

Non-invasive: In this category, similar to traditional
keystroke inference techniques, an attacker records the VR
typing process using a camera, or places an on-board sensor or
wireless receiver near the victim to collect keystroke-correlated
data. However, existing video-based VR keystroke inference
techniques (e.g., [6], [7], [69]) only work for input with
hand gestures, and cannot work for input with controllers.
Controllers are physically large objects that may block parts of
users’ hands from attackers’ cameras. Also, users’ fingers are
wrapped around the controllers, and such an unnatural posture
makes it difficult to distinguish finger movements.

Regarding sensor-based attacks, since VR keystrokes occur
in mid-air rather than on a physical surface, they would not
generate vibration signals that could be detected by IMU
sensors near the victim. Also, due to the rapid attenuation
of acoustic signals with distance, the attacker’s microphone
must be placed in close proximity to the victim (e.g., within
2.2 meters [18]), which greatly limits the practicality of
acoustic-based techniques. In addition, wireless-based meth-
ods (e.g., [17]) often require deliberate placement of both a
transmitter and receiver, with the victim positioned between
them, and their performance can be adversely affected by
environmental changes. Given that the VR PIN input process
involves the coordinated motion of users’ heads, bodies, hands,
and controllers, such intertwined movement poses significant
challenges for wireless-based methods. Moreover, these meth-
ods typically require user-specific training, as gesture patterns
vary in duration and motion across individuals.

IX. CONCLUSION

This paper presents MotionDecipher, a novel video-based
attack that infers PINs entered in VR. MotionDecipher op-
erates under a realistic threat model, assuming only visual
access to users’ hand-controller interaction during PIN entry.
It builds spatiotemporal correlations between the typed PIN
and the corresponding recorded video footage. Compared with
previous VR keystroke inference techniques, MotionDecipher
has the following advantages: (1) non-invasive, it does not
require pre-infecting the target VR headset with malware; (2)
no close proximity required, it works from distances exceeding
20 meters; (3) effective for controller-based input, it is the first
work that supports input via controllers; (4) no user-specific
training, it works for new users whose data were not used
in training the keypress event classifier. Experimental results
demonstrate that MotionDecipher can significantly reduce PIN
strength in various settings and environments, raising the
immediate need for VR users to protect their typing privacy.

ACKNOWLEDGEMENTS

We would like to thank all anonymous reviewers for their
insightful comments. This work was supported in part by the
National Science Foundation under Grants No. 2155181 and
No. 2424439.

[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

Polaris Market Research & Consulting, Inc., “Virtual
reality market share, size, trends, industry analysis report,”
https://www.polarismarketresearch.com/industry-analysis/virtual-reality-
market, 2024.

“Us virtual reality market size,” https://www.oberlo.com/statistics/us-
virtual-reality-market-size, 2024.

Meta, “What is the metaverse?” https://about.meta.com/what-is-the-
metaverse/, 2025.

e “Manage your passcode on meta quest,”
https://www.meta.com/help/quest/articles/accounts/account-settings-
and-management/passcode-meta-quest/, 2025.

HTC Corporation, “Vive focus 3 support - settings: Setting a device pass-
code,” https://www.vive.com/us/support/focus3/category_howto/setting-
device-lock.html, 2025.

Z. Ling, Z. Li, C. Chen, J. Luo, W. Yu, and X. Fu, “I know what you
enter on gear vr,” in 2019 IEEE Conference on Communications and
Network Security (CNS), 2019, pp. 241-249.

U. Meteriz-Yildiran, N. F. Yildiran, A. Awad, and D. Mohaisen, “A
keylogging inference attack on air-tapping keyboards in virtual envi-
ronments,” in 2022 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), 2022, pp. 765-774.

S. Luo, X. Hu, and Z. Yan, “Holologger: Keystroke inference on mixed
reality head mounted displays,” in 2022 IEEE Conference on Virtual
Reality and 3D User Interfaces (VR), 2022, pp. 445-454.

C. Slocum, Y. Zhang, N. Abu-Ghazaleh, and J. Chen, “Going through the
motions: AR/VR keylogging from user head motions,” in 32nd USENIX
Security Symposium (USENIX Security 23). Anaheim, CA: USENIX
Association, Aug. 2023, pp. 159-174.

D. Balzarotti, M. Cova, and G. Vigna, “Clearshot: Eavesdropping on
keyboard input from video,” in 2008 IEEE Symposium on Security and
Privacy (SP 2008), 2008, pp. 170-183.

D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha, “Beware, your
hands reveal your secrets!” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
904-917.

M. Sabra, A. Maiti, and M. Jadliwala, “Zoom on the keystrokes:
Exploiting video calls for keystroke inference attacks,” in Network and
Distributed Systems Security (NDSS) Symposium 2021, 2021.

Y. Chen, T. Li, R. Zhang, Y. Zhang, and T. Hedgpeth, “Eyetell: Video-
assisted touchscreen keystroke inference from eye movements,” in 2018
IEEE Symposium on Security and Privacy (SP), 2018, pp. 144-160.

R. Raguram, A. M. White, D. Goswami, F. Monrose, and J.-M. Frahm,
“ispy: automatic reconstruction of typed input from compromising
reflections,” in Proceedings of the 18th ACM Conference on Computer
and Communications Security, ser. CCS "11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 527-536.

J. Sun, X. Jin, Y. Chen, J. Zhang, Y. Zhang, and R. Zhang, “Visible:
Video-assisted keystroke inference from tablet backside motion,” in
Network and Distributed System Security Symposium, 2016.

Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao, “Blind recognition
of touched keys on mobile devices,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’14. New York, NY, USA: Association for Computing Machinery,
2014, p. 1403-1414.

A. A. Arafat, Z. Guo, and A. Awad, “Vr-spy: A side-channel attack on
virtual key-logging in vr headsets,” in 202/ IEEE Virtual Reality and
3D User Interfaces (VR), 2021, pp. 564-572.

S. Luo, A. Nguyen, H. Farooq, K. Sun, and Z. Yan, “Eavesdropping on
controller acoustic emanation for keystroke inference attack in virtual
reality,” in The Network and Distributed System Security Symposium
(NDSS), 2024.

W. Mao, M. Wang, W. Sun, L. Qiu, S. Pradhan, and Y.-C. Chen,
“Rnn-based room scale hand motion tracking,” in The 25th Annual
International Conference on Mobile Computing and Networking, ser.
MobiCom ’19. New York, NY, USA: Association for Computing
Machinery, 2019.

D. Li, S. Cao, S. I. Lee, and J. Xiong, “Experience: practical problems
for acoustic sensing,” in Proceedings of the 28th Annual International
Conference on Mobile Computing And Networking, ser. MobiCom ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
381-390.

(21]
(22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]
[35]

[36]

[37]
(38]

[39]

[40]
[41]
[42]
[43]

[44]

[45]

“MediaPipe,” https://github.com/google-ai-edge/mediapipe, 2025.
Google Al, “Hand landmarks detection guide for python,” https://ai.
google.dev/edge/mediapipe/solutions/vision/hand_landmarker/python,
2025.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580-587.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” IEEE transactions on
pattern analysis and machine intelligence, vol. 39, no. 6, pp. 1137-1149,
2016.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961-2969.

J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadar-
rama, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 4, pp. 677-691,
2017.

K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S.
Zemel, and Y. Bengio, “Show, attend and tell: Neural image caption
generation with visual attention,” arXiv preprint arXiv:1502.03044,
2015.

K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Computation, vol. 1, no. 4, pp. 541-551,
1989.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

S. Hochreiter, “Long short-term memory,” Neural Computation MIT-
Press, 1997.

Meta, “Opt in or out of a Meta Quest pin for purchases,”
https://www.meta.com/help/quest/articles/accounts/account-settings-
and-management/opt-in-or-out-meta-quest-pin/, 2024.

A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dolldr, and R. Girshick,
“Segment anything,” arXiv:2304.02643, 2023.

“Opencv: Opencv modules,” https://docs.opencv.org/4.x, 2024.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010: 19th International Con-
ference on Computational StatisticsParis France, Keynote, Invited and
Contributed Papers. Springer, 2010, pp. 177-186.

“tf keras.layers.randomflip,” https://www.tensorflow.org/api_docs/
python/tf/keras/layers/RandomFlip, 2024.
“tf.keras.layers.randomrotation,” https://www.tensorflow.org/api_docs/
python/tf/keras/layers/RandomRotation, 2024.

Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” in Neural networks: Tricks of the trade: Second
edition. Springer, 2012, pp. 437-478.

L. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks of
the trade. Springer, 2002, pp. 55-69.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017. [Online]. Available: https://arxiv.org/abs/1412.6980

Samsung, “Galaxy S23,” https://www.samsung.com/us/smartphones/
galaxy-s23/, 2024.

“Rockyou2024 The largest password compilation
https://github.com/exploit-development/Rock You2024, 2024.
E. von Zezschwitz, P. Dunphy, and A. De Luca, “Patterns in the wild:
a field study of the usability of pattern and pin-based authentication on
mobile devices,” in Proceedings of the 15th International Conference
on Human-Computer Interaction with Mobile Devices and Services, ser.
MobileHCI "13. New York, NY, USA: Association for Computing
Machinery, 2013, p. 261-270.

D. Wang, Q. Gu, X. Huang, and P. Wang, “Understanding human-
chosen pins: Characteristics, distribution and security,” in Proceedings of

leak,”

[46]

[47]

[48]

[49]
[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

the 2017 ACM on Asia Conference on Computer and Communications
Security, ser. ASIA CCS ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 372-385.

J. H. Huh, H. Kim, R. B. Bobba, M. N. Bashir, and K. Beznosov,
“On the memorability of system-generated PINs: Can chunking
help?” in Eleventh Symposium On Usable Privacy and Security
(SOUPS 2015). Ottawa: USENIX Association, Jul. 2015, pp. 197-
209. [Online]. Available: https://www.usenix.org/conference/soups2015/
proceedings/presentation/huh

G. Ye, Z. Tang, D. Fang, X. Chen, K. I. Kim, B. Taylor, and Z. Wang,
“Cracking android pattern lock in five attempts,” in Proceedings of the
2017 Network and Distributed System Security Symposium 2017 (NDSS
17). Internet Society, 2017.

Meta, “How to use Passthrough on Meta Quest,”
https://www.meta.com/help/quest/articles/getting-started/getting-started-
with-quest-pro/full-color-passthrough/, 2025.

Samsung, “Galaxy s23 ultra,” https://www.samsung.com/us/
smartphones/galaxy-s23-ultra/, 2025.

“Amazon product - cellphone camera lens,” https://www.amazon.com/
dp/BODJ4JR82N, 2025.

Apple Inc., “Apple platform security,” https://support.apple.com/en/
guide/security/sec20230a10d/web, 2025.

Q. Yue, Z. Ling, W. Yu, B. Liu, and X. Fu, “Blind recognition
of text input on mobile devices via natural language processing,”
in Proceedings of the 2015 Workshop on Privacy-Aware Mobile
Computing, ser. PAMCO °15. New York, NY, USA: Association

for Computing Machinery, 2015, p. 19-24. [Online]. Available:
https://doi.org/10.1145/2757302.2757304

Z. Yang, Y. Chen, Z. Sarwar, H. Schwartz, B. Y. Zhao,
and H. Zheng, “Towards a general video-based keystroke

inference attack,” in 32nd USENIX Security Symposium (USENIX
Security 23). Anaheim, CA: USENIX Association, Aug. 2023,
pp. 141-158. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/yang-zhuolin

Y. Xu, J. Heinly, A. M. White, F. Monrose, and J.-M. Frahm, “Seeing
double: reconstructing obscured typed input from repeated compromis-
ing reflections,” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, ser. CCS *13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 1063—-1074.
L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emanations
revisited,” ACM Trans. Inf. Syst. Secur., vol. 13, no. 1, Nov. 2009.

A. Compagno, M. Conti, D. Lain, and G. Tsudik, “Don’t skype & type!
acoustic eavesdropping in voice-over-ip,” in Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security,
ser. ASIA CCS ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 703-715.

J. Liu, Y. Wang, G. Kar, Y. Chen, J. Yang, and M. Gruteser, “Snooping
keystrokes with mm-level audio ranging on a single phone,” in Proceed-
ings of the 21st Annual International Conference on Mobile Computing
and Networking, ser. MobiCom *15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 142-154.

J.-X. Bai, B. Liu, and L. Song, “I know your keyboard input: A robust
keystroke eavesdropper based-on acoustic signals,” in Proceedings of
the 29th ACM International Conference on Multimedia, ser. MM °21.
New York, NY, USA: Association for Computing Machinery, 2021,
p. 1239-1247. [Online]. Available: https://doi.org/10.1145/3474085.
3475539

L. Cai and H. Chen, “Touchlogger: inferring keystrokes on touch screen
from smartphone motion,” in Proceedings of the 6th USENIX Conference
on Hot Topics in Security, ser. HotSec’11. USA: USENIX Association,
2011, p. 9.

P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp)iphone: decoding
vibrations from nearby keyboards using mobile phone accelerometers,”
in Proceedings of the 18th ACM Conference on Computer and Commu-
nications Security, ser. CCS *11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 551-562.

H. Wang, T. T.-T. Lai, and R. Roy Choudhury, “Mole: Motion
leaks through smartwatch sensors,” in Proceedings of the 21st Annual
International Conference on Mobile Computing and Networking, ser.
MobiCom ’15. New York, NY, USA: Association for Computing
Machinery, 2015, p. 155-166. [Online]. Available: https://doi.org/10.
1145/2789168.2790121

Y. Liu and Z. Li, “aleak: Privacy leakage through context - free

Pre-processed frame After SAM (x) After Mask R-CNN (v)

Fig. 31: Segmentation results of SAM and Mask R-CNN.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

wearable side-channel,” in IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications, 2018, pp. 1232-1240.

Q. He, E. Yang, and S. Fang, “A survey on human profile informa-
tion inference via wireless signals,” IEEE Communications Surveys &
Tutorials, vol. 26, no. 4, pp. 2577-2610, 2024.

K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Keystroke recognition
using wifi signals,” in Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking, ser. MobiCom ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
90-102. [Online]. Available: https://doi.org/10.1145/2789168.2790109
M. Li, Y. Meng, J. Liu, H. Zhu, X. Liang, Y. Liu, and N. Ruan,
“When csi meets public wifi: Inferring your mobile phone password
via wifi signals,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS "16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 1068-1079.
S. Fang, I. Markwood, Y. Liu, S. Zhao, Z. Lu, and H. Zhu, “No
training hurdles: Fast training-agnostic attacks to infer your typing,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS "18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 1747-1760. [Online].
Available: https://doi.org/10.1145/3243734.3243755

E. Yang, S. Fang, I. Markwood, Y. Liu, S. Zhao, Z. Lu, and
H. Zhu, “Wireless training-free keystroke inference attack and defense,”
IEEE/ACM Transactions on Networking, vol. 30, no. 4, pp. 1733-1748,
2022.

E. Yang, Q. He, and S. Fang, “WINK: Wireless inference of numerical
keystrokes via zero-training spatiotemporal analysis,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 3033-3047.

S. R. K. Gopal, D. Shukla, J. D. Wheelock, and N. Saxena, “Hidden
reality: Caution, your hand gesture inputs in the immersive virtual world
are visible to all!” in 32nd USENIX Security Symposium (USENIX
Security 23). Anaheim, CA: USENIX Association, Aug. 2023,
pp. 859-876. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/gopal

APPENDIX

A. Refined Hand Regions Extraction Comparison

Fig. 31 compares the segmentation performance between
SAM and the trained Mask R-CNN via three exemplary
cases, where SAM all fails and Mask R-CNN consistently
succeeds. In general, SAM may introduce segmentation errors,
including (1) Case I - Redundancy: the irrelevant background
is recognized as part of the refined target hand area; (2) Case
2 - Missing Important Details: the irrelevant background is
successfully winnowed out, but the controller is also removed;

Algorithm 1 Spatial Vector Generation

TABLE IV: Average top-k accuracy vs. recording frame rate.

1: procedure S_VECTOR_GEN([z1, 22, -, ZN])
2: for i in {1,2,--- ,N} do
3: j — ASSIGNCLUSTER ;)

Assign z; to a cluster
based on similarity

4: addxiton #]E{l,?,,M}
5: end for
6: for each C; in Clusters do
7: rj — RANELEMENT(C})
Pick a random element
in each cluster
8: add (Cj,r;) to ElementList
9: end for
10: sort ElementList by r; value
11: SortedClusters <— ElementList(:,1)
12: for i in {1,2,--- N} do
13: for j in {1,2,--- ,M} do
14: if x; € SortedClusters[j] then
15: Yi < J # Assign the cluster index
after sorting
16: break
17: end if
18: end for
19: end for
20: return [y1, Y2, -, Yn)
21: end procedure
9—— 9
28 H - 28 H T
8, 1 | 85 ! 1 1
FBoo rDog
4 4

30 60 120
Frame Rate (FPS)

Fig. 32: Entropy vs. recording Fig. 33: Entropy vs. recording
frame rate. resolution.

720p 1080p

Resolution

4K

(3) Case 3 - Combination: a big portion of the controller is
discarded, while partial background are mistakenly segmented.

B. Algorithm for Deriving Spatial Vector

We define the spatial vector in Section IV-C1. Algorithm 1
outlines the spatial vector generation procedure, where the pre-
defined function AssignCluster(x;) classifies NV elements into
M clusters based on similarity, and RanElement(C;) selects
a random element from the cluster C;.

C. Impact of Recording Frame Rates

Different frame rates of the recording can cause variations in
the number of frames spanned across a keystroke event, which
may affect the keystroke recognition accuracy. We compare
the performance of three different common frame rates for the
recording device - Samsung S23, including 30 FPS, 60 FPS,

Frame Rate | Top-10 | Top-25 | Top-50 | Top-100 | Top-200
30 FPS 0.13 0.33 0.63 0.85 0.93
60 FPS 0.20 0.50 0.78 0.88 0.94
120 FPS 0.21 0.53 0.80 0.92 0.98

TABLE V: Average top-k accuracy vs. recording resolution.

Resolution | Top-10 | Top-25 | Top-50 | Top-100 | Top-200
720p 0.17 0.44 0.73 0.87 0.94
1080p 0.20 0.50 0.78 0.88 0.94
4K 0.21 0.52 0.78 0.89 0.95

and 120 FPS. Fig. 32 shows the obtained entropy distribution
under different frame rates. We see that regardless of the
recording frame rate, MotionDecipher consistently reduces the
entropies of various PINs to varying degrees. Moreover, the
mean entropy slightly decreases as the frame rate increases.
Specifically, the mean entropies at 30, 60, and 120 FPS are
6.53, 5.99, and 5.82 bits, respectively. This trend suggests that
higher frame rates improve recognition accuracy by capturing
more frames per keypress, thereby reducing entropy. Motion-
Decipher infers 70% of PINs at 30 FPS, 76% at 60 FPS,
and 84% at 120 FPS within 100 guesses, further showing
that higher frame rates enhance attack performance. Table IV
shows the obtained average top-k accuracy. Notably, we see
that the top-50 accuracy values for all frame rates exceed 0.6,
indicating that with MotionDecipher, a large portion of PINs
can be inferred within 50 guesses. Also, as the frame rate
increases, the PIN entropy (i.e., strength) decreases, and the
top-k accuracy rises accordingly, regardless of k.

D. Impact of Recording Resolutions

We consider three typical recording resolutions for the
recording device - Samsung S23: 720p (1280x720 pixels),
1080p (1920x1080 pixels), and 4K (3840x2160 pixels).
Fig. 33 presents the entropy distribution under varying record-
ing resolutions, with all other factors held constant. We see
our attack significantly reduces PIN entropy across all reso-
lutions, with higher resolutions yielding slightly lower mean
entropy. Particularly, the mean entropies for 720p, 1080p, and
4K are 6.18, 5.99, and 5.92 bits, respectively. Also, based
on the inferred candidates for each selected PIN, we see
that MotionDecipher infers 80% of PINs at 720p, 82% at
1080p, and 84% at 4K within 140 guesses. Higher resolutions
often provide clearer recordings, enabling more accurate and
richer spatiotemporal measurements, which in turn enhance
overall inference performance. Table V shows the mean top-k
accuracy remains comparable across all recording resolutions
regardless of k, with slight improvements or stability as reso-
lution increases. Notably, the top-50 accuracy is consistently
at or above 0.73 across all resolutions.

